Newton's Second Law with Changing Force

Name \qquad

Data Collection:

Use the same general procedure that you used for the first Newton's Second Law lab. Except that in this case you will keep the mass on the cart constant (use a 1 kg mass on the cart) and change the force that pulls the cart. You will no longer use sand and a cup for the force but a series of different masses. You will use a 10 g weight, a 20 g weight, 50 g weight and a 100 g weight. Once again you will need to take three trials for each of the four different forces.

Masses

Mass of Cart: \qquad

Forces

Force caused by 10 gram weight \qquad
Force caused by 20 gram weight \qquad
Force caused by 50 gram weight \qquad
Force caused by 100 gram weight \qquad

Accelerations

$$
\text { Acceleration }\left(\mathbf{m} / \mathbf{s}^{2}\right) \quad \text { Average Acceleration }\left(\mathbf{m} / \mathbf{s}^{2}\right)
$$

10 gram weight \qquad
\qquad
\qquad
\qquad
20 gram weight \qquad
\qquad
\qquad
\qquad
50 gram weight \qquad
\qquad
\qquad
\qquad
100 gram weight \qquad
\qquad
\qquad
\qquad

Processing the Data

1.) Graph the Data. Plot the Average Acceleration verses the Force on a sheet of Graph Paper.
2.) What relationship do you observe between the force and the average acceleration.
3.) Does this agree with your knowledge of Newton's $2^{\text {nd }}$ law of motion? Support your answer using the law and your data.
4.) Extend your graph until it crosses the x-axis. In other words when the Average acceleration equals zero. Does your force equal zero also? If not, what has caused the difference?
5.) What is the force due to friction on the cart according to your graph? Which direction is the force due to friction?

