\qquad
Concepts: In this section define the following concepts in your own words and complete sentences
1.) Constant Velocity -
2.) Average Acceleration -
3.) Instantaneous Acceleration -
4.) Free Fall -
5.) Acceleration due to Gravity -
6.) Air Resistance -

Conceptual Understanding:

7.) What is the acceleration of a truck going in a straight line and at a constant speed?
8.) If an object is turning; does it have a constant speed? Does it have a constant velocity? Does it have acceleration?
9.) What three ways can you accelerate a car?
10.) If a rocket is accelerating at $25 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, what does that mean is happening to its speed?
11.) If all objects accelerate downward on earth (near earth) at $9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, why do some objects reach the ground before other objects?

Playing with the numbers (plug and chug): In this section the numbers are given clearly and you need only plug them into the equations to reach an answer.
v_{i} is the initial position
t_{f} is the final time
t_{i} is the initial time
12.) Find the average acceleration.

If $v_{i}=0 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{f}}=15 \mathrm{~m} / \mathrm{s}, \mathrm{t}_{\mathrm{i}}=0 \mathrm{sec}$ and $\mathrm{t}_{\mathrm{f}}=10 \mathrm{sec}$
13.) Find the average acceleration.

If $v_{i}=3 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{f}}=17 \mathrm{~m} / \mathrm{s}, \mathrm{t}_{\mathrm{i}}=0 \mathrm{sec}$ and $\mathrm{t}_{\mathrm{f}}=4 \mathrm{sec}$
14.) Find the average acceleration.

If $x_{i}=3 \mathrm{~m} / \mathrm{s}, \mathrm{x}_{\mathrm{f}}=37 \mathrm{~m} / \mathrm{s}, \mathrm{t}_{\mathrm{i}}=3 \mathrm{sec}$ and $\mathrm{t}_{\mathrm{f}}=7.9 \mathrm{sec}$
12.) Find the final speed.

If $v_{i}=35 \mathrm{~m} / \mathrm{s}, \mathrm{a}=3 \mathrm{~m} / \mathrm{s} / \mathrm{s}, \mathrm{t}_{\mathrm{i}}=0 \mathrm{sec}$ and $\mathrm{t}_{\mathrm{f}}=10 \mathrm{sec}$
13.) Find the time interval.

If $\mathrm{v}_{\mathrm{i}}=20 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{f}}=110 \mathrm{~m} / \mathrm{s}$, and $\mathrm{a}=5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

Deeper Understanding: These problems more closely represent how you might relate the concept of speed to real life and are in the form of story problems.
14.) If a falling object were equipped with a speedometer and accelerometer, What would its acceleration be during the first 6 seconds? What would its speed be for each of the first six seconds? (create a chart and show work)
15.) If you were going from $6 \mathrm{~m} / \mathrm{s}$ to $14 \mathrm{~m} / \mathrm{s}$ in 8 seconds, how quickly are you accelerating?
16.) If I throw a ball downward at $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ what will its speed be just before it hits the ground if it takes 11 seconds to hit the ground?

