specific Iferat

Name \qquad
Concepts:

1) Define Temperature and give the equation for it.
2) Define Heat and give the equation for it.
3) Define Thermal Contact.
4) Define Thermal Equilibrium.
5) Define Internal Energy.

Conceptual Questions:
6) If the speed of a molecule doubles what happens to the temperature?
7) What would happen to the average KE if the temperature went from 400 K to 200 K ?
8) What would happen to the average speed of the molecule if the temperature went from 400 K to 200 K ?
9) Why is something hot or cold?
10) What happens when an object gains potential energy due to gravity?

Problems involving heat:
Heat: $\quad \mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$ where Q is the amount of heat, m is the mass, c is the specific heat of the material and $\Delta \mathrm{T}$ is the change in temperature $\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right) . \quad 4.187$ joules $=1 \mathrm{cal}$ or 4187 joules $=1 \mathrm{kcal}$

Give your answers in terms of both calories and joules.

1) How much heat (energy) is needed to raise 100 g of water from $10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$?
2) How much heat is given off when 85 g of lead cools from $200^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$
3) If 2000 calories of heat are used to heat a substance, how many joules where used?
4) How much heat is given off when 85 grams of lead cools from $150^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$?
5) What is the specific heat of a substance if 50 grams of the substance gives off 1200 cal of heat when it cools from $100^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$?
6) How much heat does it take to raise 40 grams of silver from $100^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$?
7) Aluminum is often used as a container for the purpose of measuring the amount of heat added to or given off by a substance. It is therefore necessary to also be able to calculate the amount of heat absorbed by the container. Therefore how much heat will a 40 gram calorimeter gain if it's temperature is raised from $22^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$?
8) If 800 cal are used added to iron, how much will the temperature increase? $\mathrm{m}=100 \mathrm{~g}$.
9) If 800 cal of heat are added to water, how much will the temperature increase? $\mathrm{m}=100 \mathrm{~g}$.
10) If 1500 cal of heat are added to copper and the initial temperature is $50^{\circ} \mathrm{C}$, what will the final temperature be? $\mathrm{m}=100 \mathrm{~g}$.
